
TEP

Principle

Two identical gravity pendula with a particular characteristic frequency are coupled via a
“soft” spiral spring. The amplitudes of both pendula are recorded as a function of time. The
coupling factors are determined by way of different methods. Then, the local points of the
oscillation are integrated into the video.

Related topics

Spiral spring, gravity pendulum, spring constant, torsional oscillation, torque, beat, angular
velocity, angular acceleration, and characteristic frequency

Equipment

2 Pendula with recorder connection 02816-00
1 Helical spring, 3 N/m 02220-00
2 Bench clamp PHYWE 02010-00
2 Support rod PHYWE, square, l = 630 mm 02027-55
1 Support rod, stainless steel, 500 mm 02032-00
4 Right angle clamp PHYWE 02040-55
1 Measuring tape, l = 2 m 09936-00
1 Dynamometer, transparent, 1 N 03065-02
1 “measure Dynamics” software 14440-61

Additional material

Video camera, tripod, computer
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Coupled pendula with “measure-Dynamics”

Figure 1: Experimental set-up



Tasks

1. Determination of the spring constant of the coupling spring. 
2. Determination  and  adjustment  of  the  characteristic  frequency  of  the  uncoupled

pendulum. Determination of the moment of inertia of the pendulum.
3. Graphical representation of the oscillation of the two pendula as a function of time and

determination  of  the  oscillation  frequency  compared  to  the  theoretical  oscillation
frequency for

A) the “in phase” oscillation.
B) the “antiphase” oscillation.
C) the beat case.

Set-up and procedure

Prior to  starting the measurements,  the exact value of  the spring constant DF of the
coupling spring must be determined. For this purpose the spring is placed on the table,
fixed on one side and extended at the other side by means of the dynamometer. In doing
so the required force F can be read off the dynamometer and the elongation x is measured
with the measuring tape. The spring constant can be easily determined from Hooke’s law:

DF=
F
x

It is recommended to lengthen the spring by 10 cm, 20 cm and 30 cm in order to obtain a
mean value for the spring constant DF .

Set up both pendula without the coupling spring as shown in Figure 1.

In order to cause the pendula to oscillate, touch the rods of the pendula in the upper third
with the tips of your finger and displace them simultaneously in the same or opposite
directions until the desired amplitude is reached. In this way, transverse oscillations can be
avoided. In view of the subsequent experiment, it  should be ensured that the pendula
oscillate in the same plane.
The videos are used to determine the period of oscillation T0
for  each pendulum.  The value  of  the  period  of  oscillation  T of  both  pendula  must  be
identical. If there are deviations, the lengths of the pendula must be corrected. 
For the experiment with the coupling spring, connect the spring to the two plastic hooks on
the pendulum rods in two positions. These positions must be equidistant from the pivot of
the pendulum.
Measure the amplitudes as a function of time with the following initial conditions: 

A) Both pendula are deflected in the same direction with the same amplitude and
they are released simultaneously (“in phase” oscillation).

B) Both pendula are deflected with the same amplitude, but in opposite directions
(“antiphase” oscillation), and they are released simultaneously. 

C) One pendulum remains at rest. The second pendulum is deflected and released
(beat case). In this case, satisfactory results can only be achieved if the pendula
are properly re-adjusted during the preparation phase so that they actually have
the same period of oscillation T̄ 0
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In all three cases, the oscillations must be recorded for at least one to three minutes. Then,
the average values of the corresponding periods of oscillation can be determined based on
the plotted curves. 

In terms of the video that will be recorded, the following must be taken into consideration
concerning the setting and positioning of the camera: 

• Set the number of frames per second to approximately 30 fps.
• Select a light-coloured, homogeneous background.
• Provide additional lighting for the experiment.
• The experiment  set-up should  be  in  the  centre  of  the  video.  To  ensure  this,

position the video camera on a tripod centrally in front of the experiment set-up.
• The experiment set-up should fill the video image as completely as possible.
• The optical axis of the camera must be parallel to the experiment set-up.
• For scaling, the length of the pendulum arm must be measured.

Then, the video recording process and the experiment can be started.

Theory

If two gravity pendula P1 and P2 with the same characteristic frequency ω 0 are coupled
by way of a spring, the following is true for the torque in the case of the position of rest
and in the case of small deflections due to gravity and due to the spring tension (see Figure
2):

Torque due to gravity:

M s ,0=mgLsin(Φ0)≈mgLΦ0 (1)

Torque due to spring tension:

MF ,0=−DF x0 lcos (Φ0)≈−DF x0l

DF Spring constant
x0 Elongation of the spring
l Coupling length
m Mass of the pendulum
L Length of the pendulum
g Gravitational acceleration
Φ0 Angle between the vertical and the position of rest
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If P1 is deflected by DF and P2 by Φ2 (see Figure 3) and if both pendula are released
simultaneously, the following results because of 

I Φ̈=M

I = Moment of inertia of the pendulum around its pivot

I Φ̈1=M 1=−mgLΦ1+DF l
2
(Φ2−Φ1) (2)

I Φ̈2=M 2=−mgLΦ2+DF l
2
(Φ2−Φ1)

Following the introduction of the abbreviations

ω 0
2
=
mgl
I

and Ω
2
=
DF l

2

I
(3)

we obtain the following based on equation (2)

Φ̈1+ω 0
2
Φ1=−Ω

2
(Φ2−Φ1) (4)

Φ̈2+ω 0
2
Φ2=+Ω

2
(Φ2−Φ1)

With, t=0 the following three initial conditions are successfully realised.

A) “in phase” oscillation 

Φ1=Φ2=ΦA ; Φ1−Φ2=0

B) “antiphase” oscillation

−Φ1=Φ2=Φ A ; Φ1−Φ2=2ΦA (5)

C) beat case

Φ1=ΦA ; Φ2=0 ; Φ1−Φ2=Φ A
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The general solutions of the differential equations (4) with the initial conditions (5) are:

A: Φ1(t) = Φ2(t ) = ΦAcos(ω0 t ) (6a)

B: Φ1(t )=ΦA cos(√ω 0
2+2Ω2 t) (6b)

Φ2(t )=−ΦA cos (√ω 0
2
+2Ω2 t)

C:
Φ1(t )=ΦA cos(√ω 0

2
+2Ω2

−ω 0

2
⋅t)

⋅cos(√ω 0
2
+2Ω2

+ω 0

2
⋅t) (6c)

Φ1(t )=ΦA cos(√ω 0
2+2Ω2−ω 0

2
⋅t)

⋅sin(√ω 0
2
+2Ω2

+ω 0

2
⋅t)
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Figure 2: Diagram indicating the various names that 
are used in the context of coupled pendula



Note
A) “in phase” oscillation

Both pendula oscillate in phase and with the same amplitude and frequency ω G .
The  latter  is  identical  with  the  characteristic  frequency  of  the ω 0 uncoupled
pendulum.

ω g=ω 0 (7a)

B) “antiphase” oscillation
Both pendula oscillate  with the same amplitude and frequency ω C ,  but with a
phase difference of π. In accordance with (3), the angular frequency 

ω=√ω 0
2+2Ω2 (7b)

depends on the length of the pendulum l

C) Beat case
For a weak coupling, e.g., ω 0≫Ω the angular frequency of the first factor can be
expressed as follows: 

ω 1=
√ω 0

2
+2Ω2

−ω 0

2
≃ Ω

2

2ω 0

(8a)

For the angular frequency of the second factor, we get: 

ω 1=
√ω 0

2
+2Ω2

+ω 0

2
≃ω 0+

Ω
2

2ω 0

(8b)

As a result, we obtain the following:

ω 1 <ω 2 .

Figure 2 shows the amplitudes Φ1(t ) and Φ2( t) of both pendula as a function of time for
the beat case and for different coupling lengths. As the coupling factor, we define the ratio 

K=
DF l

2

mgL+DF l
2 (9)
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From equations (3) and (9) we get

K= Ω
2

ω 0
2
+Ω

2 (10)

The coupling factor K from equation (10) can be calculated based on the frequencies of the
individual oscillation modes. Substituting equations (7a) and (7b) in equation (10 results in

K=
ω C
2
−ω g

2

ω C
2
+ω g

2 (11)

(“antiphase” oscillation)

Substituting equations (8a) and (8b) in equation (10) results in

K=
2ω 1ω 2

ω 1
2
+ω 2

(12)

(beat case)

In order to test the influence of the coupling length on the frequencies of the individual
oscillations, we substitute equations (11) and (12) in equation (9). This yields the following
for the “antiphase” oscillation:

ω 1
2
=
2DFω 0

2

mgL
l2+ω 0

2 (13)

The following results for the beat case:

ω 1=ω 0

DF
2mgL

l2 (14)

and

ω 2=ω 0

DF
2mgL

l2+ω 0 (15)
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Evaluation

Task 1: Determination of the spring constant of the coupling spring. 

Transfer the video to the computer. Then, start “measure Dynamics” and open the video
under “File” – “Open video …”. Mark the length of the spring with the scale that appears in
the video by way of “Video analysis” – “Scaling …” – “Calibration” and enter the length of
the spring without a load (in this case 14 cm) into the input window. Next, create three
new columns via the table menu line. Enter the mass of the weights (name: “Mass”, unit:
“kg” or “g”) into the first column, the length of the spring (name: “L”, unit: “m”) into the
second column, and the elongation of the spring (name: “Elongation”, unit: “m”, formula:
“L-0.14”) into the third column. Next, open “Measure length” under “Measure”. Then, fast
forward the video to the points where additional weights are suspended from the spring.
Enter the mass and determine the length of the spring in the same line (the scale that
appears in the video is laid along the spring) and enter it also.
Select “Display” and “Diagram”, click “Options”, delete all of the already existing graphs,
and select the graphs “Mass” (horizontal axis) – “Elongation” (vertical axis). This leads to:

Figure  3  shows the  linear  relationship  between  the  mass  and  the  elongation.  Clicking
“Options” in the menu line of the diagram and selecting the tab “Linear regression” will add
a regression line to the diagram and the corresponding function will be displayed in the
menu window. In this case here, the gradient of the line is 0.2862. This means that the
spring constant DF is: 2.86 N/m.
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Figure 3: Representation of the elongation of the spring as a function of the mass to which 
it is subjected
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Task 2: Determination and adjustment of the characteristic frequency of the uncoupled
pendulum. Determination of the moment of inertia of the pendulum.

Transfer  the  video  that  has  been  recorded  to  the  computer.  Then,  start  “measure
Dynamics”  and  open  the  video  under  “File”  –  “Open  video  …”.  Mark  the  start  of  the
experiment  (“Start  selection”  and  “Time  zero”)  and  the  end  of  the  experiment  (“End
selection”)  in  the  video  for  further  analysis  via  the  menu  line  above  the  video.  The
experiment begins with the deflection of the pendulum and it ends after several pendulum
oscillations. For this experiment, it is important to ensure that the experiment ends after a
specific number of oscillations. Determine the number of oscillations and read off the time
that was needed for these oscillations. 
The following results for pendulum (1):

T1=1.996 s

or

ω 1=
2π
T 1

=3.15⋅
1
s
.

The following results for pendulum (2):

T2=1.996 s

or

ω 2=
2π
T 2

=3.15⋅
1
s
.

This means that the periods of oscillation of the two pendula are identical. If this is not the
case, the pendulum lengths must be corrected for the subsequent experiments until the
periods of oscillation are identical.

Based on equation (3) and the known pendulum mass m=1 kg  of, the following results
for the moment of inertia of the pendulum:

I1 /2=0.978kg⋅m
2
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Task 3: Graphical representation of the oscillation of the two pendula as a function of time
and  determination  of  the  oscillation  frequency  compared  to  the  theoretical  oscillation
frequency for

(A) the “in phase” oscillation.
Transfer the recorded videos to the computer in the same manner as in task 2 and specify
the time zero as well as the start and end of the experiment. Then, mark the pendulum
arm with the scale that appears in the video by way of “Video analysis” – “Scaling …” –
“Calibration”  and  enter  the  length  that  has  been  measured  beforehand  into  the  input
window. In addition, enter the frame rate that has been set for the recording process under
“Change frame rate” and position the origin of the system of coordinates in the pivot of the
pendulum under “Origin and direction”. Turn the system of coordinates by right-clicking so
that the x-axis points horizontally to the left.
Then,  the  actual  motion  analysis  can  be  started  under  “Video  analysis”  –  “Automatic
analysis” or “Manual analysis”. For the automatic analysis, we recommend selecting “Motion
and colour analysis” on the “Analysis” tab. Under “Options”, the automatic analysis can be
optimised, if necessary, e.g. by changing the sensitivity or by limiting the detection radius.
Then,  look for  a film position in  the video where the object  that is  to  be analysed is
perfectly visible. Click the object. If the system recognises the object, a green rectangle
appears and the analysis can be started by clicking “Start”. 
If  the  automatic  analysis  does  not  lead  to  any  satisfying  results,  the  series  of
measurements can be corrected under “Manual analysis” by manually marking the object
that is to be analysed. 
In this experiment, two motions, i.e. the motions of the two pendula, must be analysed in
one video. To do so, we recommend using a separate worksheet for each motion, i.e. for
each analysis. You can switch between the worksheets in the table menu line. First, analyse
the motion of the first pendulum, followed by the analysis of the motion of the second
pendulum in a second worksheet. For the second analysis, however, the position of the
origin of the system of coordinates must be changed. Move it into the pivot of the second
pendulum.

Since the pendulum oscillates in a plane, we recommend adding another column to the
worksheets via the table menu line. This new column will hold the angle of deflection φ.
The  column  must  be  named  as  follows:  Name:  “Angle”,  unit:  “°”,  formula:
“arctan2(x;y)*360/(2*π)”. 
For the graphical representation, open “Display” and “Diagram”, click “Options”, delete all
of the already existing graphs, select the graphs t (horizontal axis) – “Angle” (vertical axis)
from both worksheets, and click “Add”. This leads to:
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If we look at a smaller detail, the following results:
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Figure 4: Representation of the deflection of both pendula for the “in phase” oscillation as a
function of time t

Figure 5: Detail of the deflection of both pendula for the “in phase” oscillation as a function 
of time t



Figure 5 shows that both pendula oscillate with the same amplitude and frequency ωg

The y-axis is offset, since the oscillation is not symmetrical with regard to the zero position
without a coupling spring. The frequency ωg is:

ωg=
2 ∙ π
T

=
2∙ π
1.993 s

=3.15⋅
1
s
.

This  value  corresponds  to  the  value  of  the  characteristic  frequency  of  the  uncoupled
pendulum. As a result, the theory has been confirmed. 

(B) “antiphase” oscillation

For the “antiphase” oscillation, the process is the same as for A). This leads to:

If we look at a smaller detail, the following results:
Figure 7 shows that both pendula oscillate with the same amplitude and frequency ωc ,
but with a phase difference of π.
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Figure 6: Representation of the deflection of both pendula for the “antiphase” oscillation as 
a function of time t
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The frequency is:

ωc=
2 ∙ π
T

=
2 ∙ π
1,789 s

=3.51 ∙
1
s
.

Based on equation (13), the theoretical frequency is:

ωc=3.47 ∙
1
s
.

As a result, the theory has been confirmed. 

(C) beat case

The process for the “beat” case is the same as for A) and B). This leads to:
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Figure 7: Detail of the deflection of both pendula for the “antiphase” oscillation as a 
function of time t



If we look at a smaller detail, the following results:
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Figure 8: Representation of the deflection of both pendula for the “beat” case as a function 
of time t

Figure 9: Detail of the deflection of both pendula for the “beat” case as a function of time t
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Figure 9 shows that there are two oscillations: the to and fro oscillation of the pendulum
with the frequency P1 and the reciprocal  transfer of the amplitude with the frequency
ω2 . They are:

ω1=
2 ∙ π
T 1

=
2 ∙ π
35.87 s

=0.175 ∙
1
s
,

ω2=
2 ∙ π
T 2

=
2 ∙ π
1.789 s

=3.51 ∙
1
s
.

Based on the equations (8a) and (8b) or (14) and (15), respectively, the theoretical 
frequencies are:

ω1=0.169 ∙
1
s
,

ω2=3.32∙
1
s
.

The experimental frequency values are nearly identical with the theoretical, calculated 
values.
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