Free fall with timer 2-1 (Item No.: P2130702)

Curricular Relevance

Difficulty
Preparation Time

Easy

Additional Requirements:

Execution Time

10 Minutes

Recommended Group Size
28888
2 Students

Experiment Variations:

Keywords:

Linear motion due to constant acceleration, laws of falling bodies, gravitational acceleration

Introduction

Overview

A sphere falling freely covers certain distances. The falling time is measured and evaluated from diagrams. The acceleration due to gravity can be determined.

Equipment

Position No.	Material	Order No.	Quantity
1	Release unit	$02502-00$	1
2	Impact switch	$02503-00$	1
3	Timer 2-1	$13607-99$	1
4	Support base DEMO	$02007-55$	1
5	Right angle clamp PHYWE	$02040-55$	2
6	Plate holder	$02062-00$	1
7	Cursors, 1 pair	$02201-00$	1
8	Meter scale, I $=1000 \mathrm{~mm}$	$03001-00$	1
9	Support rod PHYWE, square, I = 1000 mm	$02028-55$	1
10	Connecting cord, $32 \mathrm{~A}, 1000 \mathrm{~mm}$, red	$07363-01$	2
11	Connecting cord, $32 \mathrm{~A}, 1000 \mathrm{~mm}$, blue	$07363-04$	2

Tasks

1. Determine the functional relationship between height of fall and falling time $\left(h=h(t)=1 / 2 g \cdot t^{2}\right)$.
2. Determine the acceleration due to gravity.

Set-up and procedure

Fig. 2: Settings and connection to timer 2-1
The set up is shown in Fig. 1.
Connect the release unit to the "Start" sockets of the timer 2-1 and set the slide switch to rising edge $\boldsymbol{\Sigma}$ (Fig. 2). Connect the impact switch to the "Imp." and the ground socket associated with "Light barrier 1 ". Set the rotary switch to mode $\Delta \Delta$ for time period measurement.
To adjust the pan of the impact switch, use the adjusting screw under the arrest switch. A downward motion of a few tenths of a millimetre should close the stop circuit. The pan is raised by hand after each single measurement (initial position). For the effective determination of the height of fall using the marking on the release mechanism, the radius of the sphere must be taken into account (diameter $3 / 4$ inch, approx. 19 mm). The aerodynamic drag of the sphere can be disregarded. Press the "Reset" button anew for every measurement.

Fig. 2: Settings and connection to timer 2-1

Theory and evaluation

If a body of mass m is accelerated from the state of rest in a constant gravitational field (gravitational force $F_{g}=m \cdot \vec{g}$), it performs a linear motion. By applying the coordinate system in a way that the x-axis indicates the direction of motion and solving the corresponding one-dimensional equation of motion, we get:

$$
\begin{equation*}
m \frac{d^{2} h(t)}{d t^{2}} \tag{1}
\end{equation*}
$$

Fig. 3: Height of fall as a function of falling time

Fig. 4: Height of fall as a function of the square of falling time
We obtain for the initial conditions $h(0)=0$

$$
\begin{equation*}
\frac{d h(0)}{d t}=0 \tag{2}
\end{equation*}
$$

the coordinate h as a function of time (see Fig. 3):

$$
\begin{equation*}
h(t)=\frac{1}{2} g t^{2} \tag{3}
\end{equation*}
$$

Fig. 5: Measured values of the gravitational acceleration
The height is directly proportional to the square of time. This can be displayed by a representation of $h\left(t_{2}\right)$ as shown in Fig. 4. From the regression line of the data, we can calculate the gravitational acceleration because the slope is equal to $\frac{1}{2} g$ according to equation (3).
For this measurement, we receive:
$g=9.77 \mathrm{~m} / \mathrm{s}^{2}$ (theoretical value: $9.81 \mathrm{~m} / \mathrm{s}^{2}$
Fig. 5 shows the values of the gravitational acceleration for different measurements (with different heights of fall).

