

Simulation Systems **Comparison Chart**

	H]4	
	HYPERSIM	eMEGASIM	ePHASORSIM	eFPGASIM
Industries	Power Systems Simulation	Power Systems and Power Electronics Simulation	Power Systems Simulation	Power Electronics Simulation
Applications	Protection Systems, Power System Controls, Modular Multilevel Converter (MMC), Wide-Area Monitoring Protec- tion and Control, Cybersecurity	Protection Systems, Power System Controls, Modular Multilevel Converter (MMC), Microgrid, Onboard Power Systems, Hybrid and Electrical Transportation	Wide-Area Monitoring Protec- tion and Control, Power System Controls	Energy Conversion Controls, Hybrid and Electrical Transpor- tation, Power System Controls
Simulation type	EMT domain	EMT domain	Phasor domain	EMT domain
Typical time step	Network solution: 10 - 100 μs Switches and converters: 200 ns – 2 μs	Network solution: 10 - 100 μs Switches and converters: 200 ns – 2 μs	1ms - 10 ms	200 ns – 2 µs
Compatible modeling environments	HYPERSIM, Simulink, Simscape Power System	Simulink, Simscape Power System	Simulink, Excel, PSS®E, CYME, Power Factory, FMU (Open Modelica)	Simulink, Simscape Power System, PLECS, PSIM and NI Multisim
Maximum real-time network size	3,000 3-phase nodes (9,000 nodes)	300 3-phase nodes (900 nodes)	30,000 nodes	n/a
Maximum non real-time	10,000 3-phase nodes (30,000 nodes)	1,500 3-phase nodes (5,000 nodes)	100,000 nodes	n/a

nodes)

n/a

• API: Python, C, Java, LabVIEW

· Dedicated SSN solver

Multi-physical domain

simulation

*Variable according to the selected eHS series. Visit the eHS page for more information: www.opal-rt.com/solver-ehs/

About OPAL-RT TECHNOLOGIES

network size

or per FPGA Features

Capability per CPU core

OPAL-RT is the world leader in the development of PC/FPGA-based Real-Time Digital Simulator, Hardware-In-the-Loop (HIL) testing equipment and Rapid Control Prototyping (RCP) systems to design, test and optimize control and protection systems used in power grids, power electronics, motor drives, automotive industry, trains, aircraft and various industries, as well as R&D centers and universities.

nodes)

n/a

Automatic task mapping

COMTRADE playback

Test automation tool

• API: Python

Load flow

288 states/ 128 switches*

Automatic scripting

• 200 kHz PWM I/O

required

motors

FPGA compilation not

Rich library of electrical

10,000 nodes @ 10 ms

· Positive sequence and unbal-

· Load flow (positive sequence)

anced networks

opal-rt.com